Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Directed energy deposition (DED)-based additive manufacturing (AM) was employed to fabricate three distinct bimetallic compositions to understand the role interface for the deformation behavior of bimetallic structures under compressive loading. Commercially pure titanium (CP Ti) with a hexagonal closed packed (HCP) structure, nickel (Ni) with a face-centered cubic (FCC), and tantalum (Ta) with a body-centered cubic (BCC) structure were selected to understand the deformation behavior within the pure metals and damage accumulation at the bimetallic interface. By incorporating the combination of these materials, such as Ni-Ti, Ni-Ta, and Ta-Ti, we aimed to manufacture layered-base polycrystalline composite structures with FCC-HCP, FCC-BCC, and BCC-HCP crystal unit cells, respectively. In Ni-Ti and Ni-Ta bimetallic structures, it was determined that deformation is controlled by the Ni region, where the highest deflection occurs when Ni bulges out and makes lateral stress at the interface, resulting in crack initiation, propagation, and failure of the structure. Structural edges were found to experience the highest deformation, prompting grain inclination towards the <111> crystal orientation, resulting in a favorable orientation for dislocation slip and a higher Taylor factor. However, strong interfacial bonding and similar Young's modulus between Ta and Ti altered the deformation mechanisms to twinning formation in the Ti region and observed buckling of the entire structure without significant failure at the interface.more » « less
-
Abstract In order to investigate the in‐space in situ resource utilization, directed energy deposition (DED)‐based additive manufacturing (AM) has been utilized to process Martian regolith—Ti6Al4V (Ti64) composites. Here we investigated the processability of depositing 5, 10, and 100 wt% of Martian regolith premixed with Ti6Al4V using laser‐based DED, analyzing the printed structure via X‐ray diffraction, Vicker's microhardness, scanning electron microscopic imaging, and wear characteristics utilizing an abrasive water jet cutter to simulate abrasive environments on the Martian surface. The results indicate that the surface roughness and hardness of the composites increase with respect to the Martian regolith’ weight percentage due to in situ ceramic reinforcement. For instance, i5‐wt% addition of Martian regolith increased the Vicker's microhardness from 366 ± 6 HV0.2for as‐printed Ti64 to 730 ± 27 HV0.2while maintaining similar abrasive wear performance as Ti6Al4V. The results point toward laser‐based AM for fabricating Ti64—Martian regolith composites with comparable properties. The study also reveals promising results in limiting the mass burden for future space missions, resulting in cheaper and easier launches.more » « less
An official website of the United States government
